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Motivation
- How to manage large graphse

®» |ncreasing demand for large graph management on commodity servers

<\

Facebook: 890 million daily active users on average for December 2014

» Achieving fast query response time and high throughput

<\

Partitioning/distributing and parallel processing of graph data

v However... It's always easier said than done.
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Background
- Solutions available

» Memory-based solution

<\

Single-machine: Neo4j, HyperGraphDB
v' Distributed: Trinity [1]

» General distributed solution

<

MapReduce-style ill-suited for graph processing

» More specialized solution

<

Graph partitioning and distribution
v Pregel [2], SPAR [3]



Background
- Graph guery workload types

» Queries with random access or complete traversal of an entire graph
» Queries with access bounded by partition boundaries

» Queries with access crossing the partition boundaries

W

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




Overview of Sedge

- Self Evolving Distributed Graph Management Environment
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Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Techniques of Sedge
- Complementary partitioning

» |deaq: repartition the graph with region constraint

» Basically, we want to find a new partition set of the same graph so that the
originally cross-partition edges become internal ones

(a) Partition set S, (b) S, : Complementary
partition set of S,

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




Techniques of Sedge
- Complementary partitioning

» How it's done theoreticallye

v Formulation to a nonconvex quadratically constrained quadratic integer program (QCQIP) to
reuse the existing balanced partitioning algorithms

®» How it's done practicallye
Solution1: Increase the weight of cut edges by A then rerun

v Solution2: Delete all cut edges first then rerun

» How it works then?

v There could be several partitions capable of handling a query to a vertex u

v Queries should be routed to a safe partition: u far away from partition boundaries




Technigues of Sedge
- On-demand partitioning

» Hotspotis areal bummer and it comes in two shapes
v Internal hotspots located in one partition

v' Cross-partition hotspots on the boundaries of multiple partitions




Technigues of Sedge
- On-demand partitioning

» Hotspotis areal bummer and it comes in two shapes
v Internal hotspots located in one partition

v' Cross-partition hotspots on the boundaries of multiple partitions

» To deal with internal hotspots: Partition Replication

» To deal with cross-partition hotspots: Dynamic Partitioning



Technigues of Sedge
- On-demand partitioning

Partition workload: internal, external (cross-partition)

Partition Replication starts when internal workload is intensive
Replicate partition P to P’

Send P’ to idle machine with free memory space

< SO

Else replace a slack partition with P’




Technigues of Sedge
- On-demand partitioning

» [or cross-partition hotspots: Dynamic Partitioning

<\

Better to generate new partitions that only cover these areas

v New partitions only share heavy workload while reduce communication

» Step 1: hotspot analysis

|Wext(P)| — |Eext(P)|

v" Calculate ratior = =
[Wine(P)|+|Wext(P)| |Eint(P)|+|Eext(P)]

v Hypothesis testing: if r is much higher than p, then assume there are cross-partition hotspots in P




Technigues of Sedge
- On-demand partitioning

Step 2: Track cross-partition queries «  Color-blocks: coarse-granularity

units to trace path of cross-

Mark the search path with color-blocks - .
partition queries

Profile a query to an envelope

AR NN |

+ Envelope: a sequence of blocks
that covers a cross-partition

query

\ Envelope Collection: put the
maximized # of envelopes into
: - a new partition wrt. space
° constraint

Collect the envelopes to form one new partition

/

(a) Color Block and Query Trace b) Envelop Collection

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




Technigues of Sedge
- On-demand partitioning

» Envelope collection objective

<\

Put the maximized # of envelopes into a new partition wrt. size constraint

v A classic NP-complete problem: Set-Union Knapsack Problem

v A greedy algorithm to save the day

v' Intfuition: combining similar envelopes consumes less space than combining non-similar ones

ILinLj|

v Metric: Jaccard coefficient Sim(L;, L;) = |L;UL,|
J

v' Solution: Locality-sensitive Hashing




Technigues of Sedge
- On-demand partitioning

» Envelope collection objective

<\

Put the maximized # of envelopes into a new partition wrt. size constraint

v A classic NP-complete problem: Set-Union Knapsack Problem

v A greedy algorithm to save the day

v' Intfuition: combining similar envelopes consumes less space than combining non-similar ones

ILinLj|

v Metric: Jaccard coefficient Sim(L;, L;) = |L;UL,|
J

v' Solution: Locality-sensitive Hashing — Min-Hash




Technigues of Sedge
- On-demand partitioning

Step 2: Track cross-partition queries
Mark the search path with color-blocks

Profile a query to an envelope

AR NN |

Collect the envelopes to form one new partition

» Step 3: Partition Generation

W)l

v’ Assign each cluster a benefit score p = i

v lteratively add the cluster with the highest o to an initially empty partition

(as long as the total size < the default partition size M)




Technigues of Sedge
- On-demand partitioning

» Step 2: Track cross-partition queries
v Mark the search path with color-blocks
v' Profile a query to an envelope

v Collect the envelopes to form one new partition

» Step 3: Partition Generation

W)l

v’ Assign each cluster a benefit score p = i

v lteratively add the cluster with the highest o to an initially empty partition

(as long as the total size < the default partition size M)

» Discussion: too good to be true?¢




Technigues of Sedge
- Two-level partition management

» Two-level partition
architecture

v' Primary partitions: A, B, Cand D
inter-connected in two-way

v Secondary partitions: B' and E
connected with primary ones in
one-way

Primary Partitions Secondary Partitions

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




A Look Back & Around
- Other modules of Sedge

Pregel Pregel  Pregel

» meta-data manager — Complementary]____ r ]
Ofﬂine’l Partitioning 'O G G
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Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




A Look Back & Around
- Other modules of Sedge

Pregel Pregel  Pregel
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Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




A Look Back & Around
- Other related works

®» | arge-scale graph partitioning tools

v

<\

<\

METIS, Chaco, SCOTCH

Graph platforms
SHS, PEGASUS, COSI, SPAR

Distributed query processing

Semi-structured, relational, RDF data



Experimental Evaluations
-With RDF Benchmark

» Hardware setting

<\

31 computing nodes

v" One serves as the master and the rest workers

» SP?Bench
Choose the DBLP library as its simulation basis

v 100M edges with 5 Queries: Q2, Q4, Q6, Q7, Q8

<



Experimental Evaluations
-With RDF Benchmark

. . W
» Experiment setting _% o P, WCP, ICP, []cP, [ |CP,
v' Partition configuration: CP1 to CP5 =
v Workload: 10,000 random queries with _5 10° -
random starts i
©
< o
" 102_ -
o
» Resulfs 5
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v' Significant cross-partition query reduction °©
(b
v Cross-partition query vanishes for Q2,Q4 g | l
and Qé 5 Q2 Q4 Q6 Q7 Q8
< Query Type

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




Experimental Evaluations
-With RDF Benchmark

» [Experiment setfing —4—-CPx5 _—=—CP, —A—CP,+DP
v' Partition Configuration: CP1*5, CP5 and ,_‘90_' | - - - o
CP4+DP 3
L
v' Evolving query workload: evolving 10,000 2
queries with 10 timestamps 8
S
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v'  Green vs. red: effect of on-demand
partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012




Experimental Evaluations
-With Real Graph Datasefts

» Datasets

14.8 81.5
Twitter 24 180 109.0
Bio 13 40 135.9
Syn. 17 800 543.7

Query workload

»

v’ neighbor search
v random walk
v

random walk with restart

35.3
45.4
55.3
205
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Experimental Evaluations
-With Real Graph Datasets
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Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012
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Conclusions & Takeaways

» Partitioning techniques with two level partition management

v Complementary partitioning

v On-demand partitioning

» CGreedy algorithm for dynamic partitioning

» Available at http://grafia.cs.ucsb.edu/sedge/index.html

» Takeaways:

v One partition scheme cannot fit all

v Always a tradeoff between data locality and load balancing

v' Future work can be done regarding efficient distributed RDF data storage management,

distributed query processing over RDF, etc.



http://grafia.cs.ucsb.edu/sedge/index.html

Q & A

» [ In this work, a major assumption is that the network bandwidth is consistent for
each pair of nodes. But in reality, it's often not the case. How to efficiently
manage partitions in a distributed setting with network bandwidth unevennesse

» 7 Metadata are becoming big data as well. In this design, the VPT is a few GB
for each node. In estimation, metadata is 0.1% - 1% of the data space [4]. How
to efficiently manage these tablese More generally, how to efficiently manage
graph metadata?

» 3. How to compare or extend Sedge to other settings and partition metrics:
v Setting: multi-processorse

v Data model: hyper-graph?

v Metrics: Query makespan or boundary cut?




References

» [1] Shao, Bin, Haixun Wang, and Yatao Li. "Trinity: A distributed graph
engine on a memory cloud." Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013.

» [2] Malewicz, Grzegorz, et al. "Pregel. a system for large-scale graph
processing." Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010.

» [3] Pujol, Josep M., et al. "The little engine (s) that could: scaling online
social networks." ACM SIGCOMM Computer Communication Review 41.4
(2011): 375-386.

» [4] E. L. Miller, K. Greenan, A. Leung, D. Long, and A. Wildani. (2008) Reliable
and efficient metadata storage and indexing using nvram. [Online].
Available: dcslab.hanyang.ac.kr/nvramos08/EthanMiller.pdf




Backup
- Duplicate sensitive graph query

» (Jse UNION instead of SUM.




