Towards Effective Partition
Management for Large
Graphs

Shengqi Yang, Xifeng Yan, Bo Zong and Arijit Khan (UC Santa Barbara)

Presenter. Xiao Meng

Motivation
- How to manage large graphse

®» |ncreasing demand for large graph management on commodity servers

<\

Facebook: 890 million daily active users on average for December 2014

» Achieving fast query response time and high throughput

<\

Partitioning/distributing and parallel processing of graph data

v However... It's always easier said than done.

Outline

Background

Overview of Sedge
» Techniques of Sedge

v Complementary partitioning
v On-demand partitioning

v Two-level partition management
A Look Back & Around
Experimental Evaluations
Conclusions & Takeaways
Q& A

Background
- Solutions available

» Memory-based solution

<\

Single-machine: Neo4j, HyperGraphDB
v' Distributed: Trinity [1]

» General distributed solution

<

MapReduce-style ill-suited for graph processing

» More specialized solution

<

Graph partitioning and distribution
v Pregel [2], SPAR [3]

Background
- Graph guery workload types

» Queries with random access or complete traversal of an entire graph
» Queries with access bounded by partition boundaries

» Queries with access crossing the partition boundaries

W

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Overview of Sedge

- Self Evolving Distributed Graph Management Environment

= Built upon Pregel, but Compemantay) | riege frege, | Prege
eliminating constraints and Sraph_| ofﬂin;l Partitioning]] |z
solving problems facing it T T T T onine — A= NF IR IEE
Workload | — | :3 =
v Workload balancing, overhead . outing :_Q G - _G |
reduction, duplicate vertices... Metadata | (Performance)| ¢mm | [Z=[75 T [75Tio ¢
) o Manager Optimizer e I 138
®» | everaging partitioning — ‘I M B
. . n- .e.ma'nd S B (O Kl D A 1=
techniques to achieve that Partitioning
v’ 2-level partition architecture supports Mazter Wo;/kers
complementary and on-demand _
partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Techniques of Sedge
- Complementary partitioning

» |deaq: repartition the graph with region constraint

» Basically, we want to find a new partition set of the same graph so that the
originally cross-partition edges become internal ones

(a) Partition set S, (b) S, : Complementary
partition set of S,

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Techniques of Sedge
- Complementary partitioning

» How it's done theoreticallye

v Formulation to a nonconvex quadratically constrained quadratic integer program (QCQIP) to
reuse the existing balanced partitioning algorithms

®» How it's done practicallye
Solution1: Increase the weight of cut edges by A then rerun

v Solution2: Delete all cut edges first then rerun

» How it works then?

v There could be several partitions capable of handling a query to a vertex u

v Queries should be routed to a safe partition: u far away from partition boundaries

Technigues of Sedge
- On-demand partitioning

» Hotspotis areal bummer and it comes in two shapes
v Internal hotspots located in one partition

v' Cross-partition hotspots on the boundaries of multiple partitions

Technigues of Sedge
- On-demand partitioning

» Hotspotis areal bummer and it comes in two shapes
v Internal hotspots located in one partition

v' Cross-partition hotspots on the boundaries of multiple partitions

» To deal with internal hotspots: Partition Replication

» To deal with cross-partition hotspots: Dynamic Partitioning

Technigues of Sedge
- On-demand partitioning

Partition workload: internal, external (cross-partition)

Partition Replication starts when internal workload is intensive
Replicate partition P to P’

Send P’ to idle machine with free memory space

< SO

Else replace a slack partition with P’

Technigues of Sedge
- On-demand partitioning

» [or cross-partition hotspots: Dynamic Partitioning

<\

Better to generate new partitions that only cover these areas

v New partitions only share heavy workload while reduce communication

» Step 1: hotspot analysis

|Wext(P)| — |Eext(P)|

v" Calculate ratior = =
[Wine(P)|+|Wext(P)| |Eint(P)|+|Eext(P)]

v Hypothesis testing: if r is much higher than p, then assume there are cross-partition hotspots in P

Technigues of Sedge
- On-demand partitioning

Step 2: Track cross-partition queries « Color-blocks: coarse-granularity

units to trace path of cross-

Mark the search path with color-blocks - .
partition queries

Profile a query to an envelope

AR NN |

+ Envelope: a sequence of blocks
that covers a cross-partition

query

\ Envelope Collection: put the
maximized # of envelopes into
: - a new partition wrt. space
° constraint

Collect the envelopes to form one new partition

/

(a) Color Block and Query Trace b) Envelop Collection

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Technigues of Sedge
- On-demand partitioning

» Envelope collection objective

<\

Put the maximized # of envelopes into a new partition wrt. size constraint

v A classic NP-complete problem: Set-Union Knapsack Problem

v A greedy algorithm to save the day

v' Intfuition: combining similar envelopes consumes less space than combining non-similar ones

ILinLj|

v Metric: Jaccard coefficient Sim(L;, L;) = |L;UL,|
J

v' Solution: Locality-sensitive Hashing

Technigues of Sedge
- On-demand partitioning

» Envelope collection objective

<\

Put the maximized # of envelopes into a new partition wrt. size constraint

v A classic NP-complete problem: Set-Union Knapsack Problem

v A greedy algorithm to save the day

v' Intfuition: combining similar envelopes consumes less space than combining non-similar ones

ILinLj|

v Metric: Jaccard coefficient Sim(L;, L;) = |L;UL,|
J

v' Solution: Locality-sensitive Hashing — Min-Hash

Technigues of Sedge
- On-demand partitioning

Step 2: Track cross-partition queries
Mark the search path with color-blocks

Profile a query to an envelope

AR NN |

Collect the envelopes to form one new partition

» Step 3: Partition Generation

W)l

v’ Assign each cluster a benefit score p = i

v lteratively add the cluster with the highest o to an initially empty partition

(as long as the total size < the default partition size M)

Technigues of Sedge
- On-demand partitioning

» Step 2: Track cross-partition queries
v Mark the search path with color-blocks
v' Profile a query to an envelope

v Collect the envelopes to form one new partition

» Step 3: Partition Generation

W)l

v’ Assign each cluster a benefit score p = i

v lteratively add the cluster with the highest o to an initially empty partition

(as long as the total size < the default partition size M)

» Discussion: too good to be true?¢

Technigues of Sedge
- Two-level partition management

» Two-level partition
architecture

v' Primary partitions: A, B, Cand D
inter-connected in two-way

v Secondary partitions: B' and E
connected with primary ones in
one-way

Primary Partitions Secondary Partitions

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

A Look Back & Around
- Other modules of Sedge

Pregel Pregel Pregel

» meta-data manager — Complementary]____ r]
Ofﬂine’l Partitioning 'O G G

v Meta-data maintained by master and

suoniued
Alewlid

|

—— i |

Pregel instances (PI) Online A G G G :

Workload | — | O G G |

v In master: info about each Pl and a . :_ " |
table mapping vertices to Pl Metadata | (Performance | ¢mm I T|I75T T[0T %
Manager Optimizer I - 128
v (Instance Workload Table, Vertex-Instance é"ﬁ < | = 3
Fitness List) P R D R § 3

. . . Partitionin
v In Pl.s:. an |.ndex mapping vertices to \ . &, . . y
partitions in each Pl Master Workers

v (Partition Workload Table, Vertex-Primary
Partition Table, Partition-Replicates Table, Vertex-
Dynamic Partitions Table)

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

A Look Back & Around
- Other modules of Sedge

Pregel Pregel Pregel

» Performance Optimizer — Complememary] i G 5 . qu
v Continuously collects run-time —— Offline ——onng_J i 13 §
information from all the Pls and Online Query =) G G G :§ 3
characterizes the execution of the Workload | and Fl= Il
query workload - u—————t+=-
[Metadata}_[Performance] — =TT [=Tizs
v The master updates IWT while Pls Manager Optimizer 4 - ’ L §
maintain the PWTs ondemand) 1| (] | : S g
Partitioning
N v J N > J
Master Workers

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

A Look Back & Around
- Other related works

®» | arge-scale graph partitioning tools

v

<\

<\

METIS, Chaco, SCOTCH

Graph platforms
SHS, PEGASUS, COSI, SPAR

Distributed query processing

Semi-structured, relational, RDF data

Experimental Evaluations
-With RDF Benchmark

» Hardware setting

<\

31 computing nodes

v" One serves as the master and the rest workers

» SP?Bench
Choose the DBLP library as its simulation basis

v 100M edges with 5 Queries: Q2, Q4, Q6, Q7, Q8

<

Experimental Evaluations
-With RDF Benchmark

. . W
» Experiment setting _% o P, WCP, ICP, []cP, [|CP,
v' Partition configuration: CP1 to CP5 =
v Workload: 10,000 random queries with _5 10° -
random starts i
©
< o
" 102_ -
o
» Resulfs 5
5 10}
v' Significant cross-partition query reduction °©
(b
v Cross-partition query vanishes for Q2,Q4 g | l
and Qé 5 Q2 Q4 Q6 Q7 Q8
< Query Type

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Experimental Evaluations
-With RDF Benchmark

» [Experiment setfing —4—-CPx5 _—=—CP, —A—CP,+DP
v' Partition Configuration: CP1*5, CP5 and ,_‘90_' | - - - o
CP4+DP 3
L
v' Evolving query workload: evolving 10,000 2
queries with 10 timestamps 8
S
©
S
X
Results g
v' Blue vs. green: effect of complementary 30l . . ‘
parfitioning 1 2 3 4 5 o6 7 8 9 10

Timestep
v' Green vs. red: effect of on-demand
partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Experimental Evaluations
-With Real Graph Datasefts

» Datasets

14.8 81.5
Twitter 24 180 109.0
Bio 13 40 135.9
Syn. 17 800 543.7

Query workload

»

v’ neighbor search
v random walk
v

random walk with restart

35.3
45.4
55.3
205

—4-CP, —mCP, A CP, _y CP,

Reduction of cross messages

0 — 1 — L - T — 1 - J

1 2 3 4 5
h-RWR

/ Complementary Partitioning

Il Query Profiling [|Envelopes Collection [lllPartition Creation
4

1111

10,000 20,000 30,000 40,000 50,000
of cross—partition queries

Dynamic Partitioning: runtime cost

6 7 8

w

Run time per query (ms)
- N

Experimental Evaluations
-With Real Graph Datasets

+CP1 _._CP1 + PS —A—CP1 + PS><2

>
g 200 A A A 4

iy
[9)]
o

i — —i u

— ———+

Throughput (qu
=
S8

10000 20,000 30,000 40,000 50,000
Number of queries

Partition replication: throughput

—-CP, —mCP +DP

—_
o
]

o]

N

Avg. Response Time (ms)
IS

10000 20000 30,000 _ 40,000 50,000
Number of cross—partition queries

Dynamic partitioning: response time

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

—4—Web —BTwitter —#&—Bio —¥—Syn.
50%

s

Q

5~
"

5, 30%

20%;

10%

5% 50% 75% 1005
% of cross—partition queries in the workload

Improvement in avg. response time

Cross-partition queries vs. Improvement
ratio in avg. response time

Conclusions & Takeaways

» Partitioning techniques with two level partition management

v Complementary partitioning

v On-demand partitioning

» CGreedy algorithm for dynamic partitioning

» Available at http://grafia.cs.ucsb.edu/sedge/index.html

» Takeaways:

v One partition scheme cannot fit all

v Always a tradeoff between data locality and load balancing

v' Future work can be done regarding efficient distributed RDF data storage management,

distributed query processing over RDF, etc.

http://grafia.cs.ucsb.edu/sedge/index.html

Q & A

» [In this work, a major assumption is that the network bandwidth is consistent for
each pair of nodes. But in reality, it's often not the case. How to efficiently
manage partitions in a distributed setting with network bandwidth unevennesse

» 7 Metadata are becoming big data as well. In this design, the VPT is a few GB
for each node. In estimation, metadata is 0.1% - 1% of the data space [4]. How
to efficiently manage these tablese More generally, how to efficiently manage
graph metadata?

» 3. How to compare or extend Sedge to other settings and partition metrics:
v Setting: multi-processorse

v Data model: hyper-graph?

v Metrics: Query makespan or boundary cut?

References

» [1] Shao, Bin, Haixun Wang, and Yatao Li. "Trinity: A distributed graph
engine on a memory cloud." Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013.

» [2] Malewicz, Grzegorz, et al. "Pregel. a system for large-scale graph
processing." Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010.

» [3] Pujol, Josep M., et al. "The little engine (s) that could: scaling online
social networks." ACM SIGCOMM Computer Communication Review 41.4
(2011): 375-386.

» [4] E. L. Miller, K. Greenan, A. Leung, D. Long, and A. Wildani. (2008) Reliable
and efficient metadata storage and indexing using nvram. [Online].
Available: dcslab.hanyang.ac.kr/nvramos08/EthanMiller.pdf

Backup
- Duplicate sensitive graph query

» (Jse UNION instead of SUM.

