
Towards Effective Partition

Management for Large

Graphs
Shengqi Yang, Xifeng Yan, Bo Zong and Arijit Khan (UC Santa Barbara)

Presenter: Xiao Meng

Motivation

- How to manage large graphs?

 Increasing demand for large graph management on commodity servers

 Facebook: 890 million daily active users on average for December 2014

 Achieving fast query response time and high throughput

 Partitioning/distributing and parallel processing of graph data

 However… It’s always easier said than done.

Outline

 Background

 Overview of Sedge

 Techniques of Sedge

 Complementary partitioning

 On-demand partitioning

 Two-level partition management

 A Look Back & Around

 Experimental Evaluations

 Conclusions & Takeaways

 Q & A

Background

- Solutions available

 Memory-based solution

 Single-machine: Neo4j, HyperGraphDB

 Distributed: Trinity [1]

 General distributed solution

 MapReduce-style ill-suited for graph processing

 More specialized solution

 Graph partitioning and distribution

 Pregel [2], SPAR [3]

Background

- Graph query workload types

 Queries with random access or complete traversal of an entire graph

 Queries with access bounded by partition boundaries

 Queries with access crossing the partition boundaries

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Overview of Sedge
- Self Evolving Distributed Graph Management Environment

 Built upon Pregel, but

eliminating constraints and

solving problems facing it

 Workload balancing, overhead

reduction, duplicate vertices…

 Leveraging partitioning

techniques to achieve that

 2-level partition architecture supports

complementary and on-demand

partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Techniques of Sedge

- Complementary partitioning

 Idea: repartition the graph with region constraint

 Basically, we want to find a new partition set of the same graph so that the

originally cross-partition edges become internal ones

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Techniques of Sedge

- Complementary partitioning

 How it’s done theoretically?

 Formulation to a nonconvex quadratically constrained quadratic integer program (QCQIP) to

reuse the existing balanced partitioning algorithms

 How it’s done practically?

 Solution1: Increase the weight of cut edges by λ then rerun

 Solution2: Delete all cut edges first then rerun

 How it works then?

 There could be several partitions capable of handling a query to a vertex u

 Queries should be routed to a safe partition: u far away from partition boundaries

Techniques of Sedge

- On-demand partitioning

 Hotspot is a real bummer and it comes in two shapes

 Internal hotspots located in one partition

 Cross-partition hotspots on the boundaries of multiple partitions

Techniques of Sedge

- On-demand partitioning

 Hotspot is a real bummer and it comes in two shapes

 Internal hotspots located in one partition

 Cross-partition hotspots on the boundaries of multiple partitions

 To deal with internal hotspots: Partition Replication

 To deal with cross-partition hotspots: Dynamic Partitioning

Techniques of Sedge

- On-demand partitioning

 Partition workload: internal, external (cross-partition)

 Partition Replication starts when internal workload is intensive

 Replicate partition P to P’

 Send P’ to idle machine with free memory space

 Else replace a slack partition with P’

Techniques of Sedge

- On-demand partitioning

 For cross-partition hotspots: Dynamic Partitioning

 Better to generate new partitions that only cover these areas

 New partitions only share heavy workload while reduce communication

 Step 1: hotspot analysis

 Calculate ratio r =
|𝑊𝑒𝑥𝑡(𝑃)|

|𝑊𝑖𝑛𝑡 𝑃 |+|𝑊𝑒𝑥𝑡(𝑃)|
p =

|𝐸𝑒𝑥𝑡(𝑃)|

|𝐸𝑖𝑛𝑡 𝑃 |+|𝐸𝑒𝑥𝑡(𝑃)|

 Hypothesis testing: if r is much higher than p, then assume there are cross-partition hotspots in P

Techniques of Sedge

- On-demand partitioning

 Step 2: Track cross-partition queries

 Mark the search path with color-blocks

 Profile a query to an envelope

 Collect the envelopes to form one new partition

• Color-blocks: coarse-granularity

units to trace path of cross-

partition queries

• Envelope: a sequence of blocks

that covers a cross-partition

query

• Envelope Collection: put the

maximized # of envelopes into

a new partition wrt. space

constraint

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Techniques of Sedge

- On-demand partitioning

 Envelope collection objective

 Put the maximized # of envelopes into a new partition wrt. size constraint

 A classic NP-complete problem: Set-Union Knapsack Problem

 A greedy algorithm to save the day

 Intuition: combining similar envelopes consumes less space than combining non-similar ones

 Metric: Jaccard coefficient 𝑆𝑖𝑚 𝐿𝑖 , 𝐿𝑗 =
|𝐿𝑖∩𝐿𝑗|

|𝐿𝑖∪𝐿𝑗|

 Solution: Locality-sensitive Hashing

Techniques of Sedge

- On-demand partitioning

 Envelope collection objective

 Put the maximized # of envelopes into a new partition wrt. size constraint

 A classic NP-complete problem: Set-Union Knapsack Problem

 A greedy algorithm to save the day

 Intuition: combining similar envelopes consumes less space than combining non-similar ones

 Metric: Jaccard coefficient 𝑆𝑖𝑚 𝐿𝑖 , 𝐿𝑗 =
|𝐿𝑖∩𝐿𝑗|

|𝐿𝑖∪𝐿𝑗|

 Solution: Locality-sensitive Hashing – Min-Hash

Techniques of Sedge

- On-demand partitioning

 Step 2: Track cross-partition queries

 Mark the search path with color-blocks

 Profile a query to an envelope

 Collect the envelopes to form one new partition

 Step 3: Partition Generation

 Assign each cluster a benefit score 𝜌 =
|𝑊(𝐶)|

|𝐶|

 Iteratively add the cluster with the highest ρ to an initially empty partition

(as long as the total size ≤ the default partition size M)

Techniques of Sedge

- On-demand partitioning

 Step 2: Track cross-partition queries

 Mark the search path with color-blocks

 Profile a query to an envelope

 Collect the envelopes to form one new partition

 Step 3: Partition Generation

 Assign each cluster a benefit score 𝜌 =
|𝑊(𝐶)|

|𝐶|

 Iteratively add the cluster with the highest ρ to an initially empty partition

(as long as the total size ≤ the default partition size M)

 Discussion: too good to be true?

Techniques of Sedge

- Two-level partition management

 Two-level partition

architecture

 Primary partitions: A, B, C and D

inter-connected in two-way

 Secondary partitions: B’ and E

connected with primary ones in

one-way

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

A Look Back & Around

- Other modules of Sedge

 meta-data manager

 Meta-data maintained by master and

Pregel instances (PI)

 In master: info about each PI and a

table mapping vertices to PI

 (Instance Workload Table, Vertex-Instance

Fitness List)

 In PIs: an index mapping vertices to

partitions in each PI

 (Partition Workload Table, Vertex-Primary

Partition Table, Partition-Replicates Table, Vertex-

Dynamic Partitions Table)

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

A Look Back & Around

- Other modules of Sedge

 Performance Optimizer

 Continuously collects run-time

information from all the PIs and

characterizes the execution of the

query workload

 The master updates IWT while PIs

maintain the PWTs

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

A Look Back & Around

- Other related works

 Large-scale graph partitioning tools

 METIS, Chaco, SCOTCH

 Graph platforms

 SHS, PEGASUS, COSI, SPAR

 Distributed query processing

 Semi-structured, relational, RDF data

Experimental Evaluations

-With RDF Benchmark

 Hardware setting

 31 computing nodes

 One serves as the master and the rest workers

 𝑆𝑃2Bench

 Choose the DBLP library as its simulation basis

 100M edges with 5 Queries: Q2, Q4, Q6, Q7, Q8

Experimental Evaluations

-With RDF Benchmark

 Experiment setting

 Partition configuration: CP1 to CP5

 Workload: 10,000 random queries with

random starts

 Results

 Significant cross-partition query reduction

 Cross-partition query vanishes for Q2,Q4

and Q6

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Experimental Evaluations

-With RDF Benchmark

 Experiment setting

 Partition Configuration: CP1*5, CP5 and

CP4+DP

 Evolving query workload: evolving 10,000

queries with 10 timestamps

 Results

 Blue vs. green: effect of complementary

partitioning

 Green vs. red: effect of on-demand

partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Experimental Evaluations

-With Real Graph Datasets

 Datasets

 Query workload

 neighbor search

 random walk

 random walk with restart

Graph Size (GB) Partition (s) VFL (MB) VPT (MB)

Web 14.8 120 81.5 35.3

Twitter 24 180 109.0 45.4

Bio 13 40 135.9 55.3

Syn. 17 800 543.7 205

Experimental Evaluations

-With Real Graph Datasets

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Complementary Partitioning Partition replication: throughput

Dynamic Partitioning: runtime cost Dynamic partitioning: response time

Cross-partition queries vs. Improvement

ratio in avg. response time

Conclusions & Takeaways

 Partitioning techniques with two level partition management

 Complementary partitioning

 On-demand partitioning

 Greedy algorithm for dynamic partitioning

 Available at http://grafia.cs.ucsb.edu/sedge/index.html

 Takeaways:

 One partition scheme cannot fit all

 Always a tradeoff between data locality and load balancing

 Future work can be done regarding efficient distributed RDF data storage management,
distributed query processing over RDF, etc.

http://grafia.cs.ucsb.edu/sedge/index.html

Q & A

 1. In this work, a major assumption is that the network bandwidth is consistent for
each pair of nodes. But in reality, it’s often not the case. How to efficiently
manage partitions in a distributed setting with network bandwidth unevenness?

 2. Metadata are becoming big data as well. In this design, the VPT is a few GB
for each node. In estimation, metadata is 0.1% - 1% of the data space [4]. How
to efficiently manage these tables? More generally, how to efficiently manage
graph metadata?

 3. How to compare or extend Sedge to other settings and partition metrics:

 Setting: multi-processors?

 Data model: hyper-graph?

 Metrics: Query makespan or boundary cut?

References

 [1] Shao, Bin, Haixun Wang, and Yatao Li. "Trinity: A distributed graph

engine on a memory cloud." Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data. ACM, 2013.

 [2] Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph

processing." Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. ACM, 2010.

 [3] Pujol, Josep M., et al. "The little engine (s) that could: scaling online

social networks." ACM SIGCOMM Computer Communication Review 41.4

(2011): 375-386.

 [4] E. L. Miller, K. Greenan, A. Leung, D. Long, and A. Wildani. (2008) Reliable

and efficient metadata storage and indexing using nvram. [Online].

Available: dcslab.hanyang.ac.kr/nvramos08/EthanMiller.pdf

Backup

- Duplicate sensitive graph query

 Use UNION instead of SUM.

