Towards Effective Partition Management for Large Graphs

Shengqi Yang, Xifeng Yan, Bo Zong and Arijit Khan (UC Santa Barbara) Presenter: Xiao Meng

Motivation
 - How to manage large graphs?

- Increasing demand for large graph management on commodity servers
\checkmark Facebook: 890 million daily active users on average for December 2014
- Achieving fast query response time and high throughput
\checkmark Partitioning/distributing and parallel processing of graph data
\checkmark However... It's always easier said than done.

Outline

- Background
- Overview of Sedge
- Techniques of Sedge
\checkmark Complementary partitioning
\checkmark On-demand partitioning
\checkmark Two-level partition management
- A Look Back \& Around
- Experimental Evaluations
- Conclusions \& Takeaways
- Q \& A

Background
 - Solutions available

- Memory-based solution
\checkmark Single-machine: Neo4j, HyperGraphDB
\checkmark Distributed: Trinity [1]
- General distributed solution
\checkmark MapReduce-style ill-suited for graph processing
- More specialized solution
\checkmark Graph partitioning and distribution
\checkmark Pregel [2], SPAR [3]

Background
 - Graph query workload types

- Queries with random access or complete traversal of an entire graph
- Queries with access bounded by partition boundaries
- Queries with access crossing the partition boundaries

Overview of Sedge

- Self Evolving Distributed Graph Management Environment
- Built upon Pregel, but eliminating constraints and solving problems facing it
\checkmark Workload balancing, overhead reduction, duplicate vertices...
- Leveraging partitioning techniques to achieve that
\checkmark 2-level partition architecture supports complementary and on-demand partitioning

Techniques of Sedge
 - Complementary partitioning

- Idea: repartition the graph with region constraint
- Basically, we want to find a new partition set of the same graph so that the originally cross-partition edges become internal ones

(a) Partition set S_{1}

(b) S_{2} : Complementary partition set of S_{1}
(s) bst!!!ou $2 \in \ddagger 2^{\downarrow}$
bst!!!!
(p) 2^{5} : Comb|eweufgt

Techniques of Sedge
 - Complementary partitioning

- How it's done theoretically?
\checkmark Formulation to a nonconvex quadratically constrained quadratic integer program (QCQIP) to reuse the existing balanced partitioning algorithms
- How it's done practically?
\checkmark Solutionl:Increase the weight of cut edges by λ then rerun
\checkmark Solution2: Delete all cut edges first then rerun
- How it works then?
$\checkmark \quad$ There could be several partitions capable of handling a query to a vertex u
\checkmark Queries should be routed to a safe partition: u far away from partition boundaries

Techniques of Sedge
 - On-demand partitioning

- Hotspot is a real bummer and it comes in two shapes
\checkmark Internal hotspots located in one partition
\checkmark Cross-partition hotspots on the boundaries of multiple partitions

Techniques of Sedge
 - On-demand partitioning

- Hotspot is a real bummer and it comes in two shapes
\checkmark Internal hotspots located in one partition
\checkmark Cross-partition hotspots on the boundaries of multiple partitions
- To deal with internal hotspots: Partition Replication
- To deal with cross-partition hotspots: Dynamic Partitioning

Techniques of Sedge
 - On-demand partitioning

- Partition workload: internal, external (cross-partition)
- Partition Replication starts when internal workload is intensive
\checkmark Replicate partition P to P^{\prime}
$\checkmark \quad$ Send P^{\prime} to idle machine with free memory space
$\checkmark \quad$ Else replace a slack partition with P^{\prime}

Techniques of Sedge
 - On-demand partitioning

- For cross-partition hotspots: Dynamic Partitioning
\checkmark Better to generate new partitions that only cover these areas
\checkmark New partitions only share heavy workload while reduce communication
- Step 1: hotspot analysis
\checkmark Calculate ratio $r=\frac{\left|W_{\text {ext }}(P)\right|}{\left|W_{\text {int }}(P)\right|+\left|W_{\text {ext }}(P)\right|} \quad \mathrm{P}=\frac{\left|E_{\text {ext }}(P)\right|}{\left|E_{\text {int }}(P)\right|+\left|E_{\text {ext }}(P)\right|}$
\checkmark Hypothesis testing: if r is much higher than p, then assume there are cross-partition hotspots in P

Techniques of Sedge
 - On-demand partitioning

- Step 2: Track cross-partition queries
\checkmark Mark the search path with color-blocks
$\checkmark \quad$ Profile a query to an envelope
\checkmark Collect the envelopes to form one new partition

(a) Color Block and Query Trace
(b) Envelop Collection
(s) CO|OL BIOCK suq Onel入 \perp เsce
(p) Eu^өןob CO\|धcf!ou
- Color-blocks: coarse-granularity units to trace path of crosspartition queries
- Envelope: a sequence of blocks that covers a cross-partition query
- Envelope Collection: put the maximized \# of envelopes into a new partition wrt. space constraint

Techniques of Sedge
 - On-demand partitioning

- Envelope collection objective
\checkmark Put the maximized \# of envelopes into a new partition wrt. size constraint
\checkmark A classic NP-complete problem: Set-Union Knapsack Problem
\checkmark A greedy algorithm to save the day
\checkmark Intuition: combining similar envelopes consumes less space than combining non-similar ones
\checkmark Metric: Jaccard coefficient $\operatorname{Sim}\left(L_{i}, L_{j}\right)=\frac{\left|L_{i} \cap L_{j}\right|}{\left|L_{i} \cup L_{j}\right|}$
\checkmark Solution: Locality-sensitive Hashing

Techniques of Sedge
 - On-demand partitioning

- Envelope collection objective
\checkmark Put the maximized \# of envelopes into a new partition wrt. size constraint
\checkmark A classic NP-complete problem: Set-Union Knapsack Problem
\checkmark A greedy algorithm to save the day
\checkmark Intuition: combining similar envelopes consumes less space than combining non-similar ones
\checkmark Metric: Jaccard coefficient $\operatorname{Sim}\left(L_{i}, L_{j}\right)=\frac{\left|L_{i} \cap L_{j}\right|}{\left|L_{i} \cup L_{j}\right|}$
\checkmark Solution: Locality-sensitive Hashing - Min-Hash

Techniques of Sedge
 - On-demand partitioning

- Step 2: Track cross-partition queries
\checkmark Mark the search path with color-blocks
$\checkmark \quad$ Profile a query to an envelope
\checkmark Collect the envelopes to form one new partition
- Step 3: Partition Generation
\checkmark Assign each cluster a benefit score $\rho=\frac{|W(C)|}{|C|}$
\checkmark Iteratively add the cluster with the highest ρ to an initially empty partition (as long as the total size \leq the default partition size M)

Techniques of Sedge
 - On-demand partitioning

- Step 2: Track cross-partition queries
\checkmark Mark the search path with color-blocks
$\checkmark \quad$ Profile a query to an envelope
\checkmark Collect the envelopes to form one new partition
- Step 3: Partition Generation
\checkmark Assign each cluster a benefit score $\rho=\frac{|W(C)|}{|C|}$
\checkmark Iteratively add the cluster with the highest ρ to an initially empty partition (as long as the total size \leq the default partition size M)
- Discussion: too good to be true?

Techniques of Sedge
 - Two-level partition management

- Two-level partition architecture
\checkmark Primary partitions: A, B, C and D inter-connected in two-way
\checkmark Secondary partitions: B^{\prime} and E connected with primary ones in one-way

(p) $0 \wedge \in$ ц|sbbiua

A Look Back \& Around - Other modules of Sedge

- meta-data manager
\checkmark Meta-data maintained by master and Pregel instances (PI)
$\checkmark \quad$ In master: info about each PI and a table mapping vertices to PI
\checkmark (Instance Workload Table, Vertex-Instance Fitness List)
$\checkmark \quad$ In PIs: an index mapping vertices to partitions in each PI
$\checkmark \quad$ Partition Workload Table, Vertex-Primary Partition Table, Partition-Replicates Table, VertexDynamic Partitions Table)

A Look Back \& Around - Other modules of Sedge

- Performance Optimizer
\checkmark Continuously collects run-time information from all the PIs and characterizes the execution of the query workload
$\checkmark \quad$ The master updates IWT while PIs maintain the PWTs

A Look Back \& Around - Other related works

- Large-scale graph partitioning tools
\checkmark METIS, Chaco, SCOTCH
- Graph platforms
\checkmark SHS, PEGASUS, COSI, SPAR
- Distributed query processing
\checkmark Semi-structured, relational, RDF data

Experimental Evaluations -With RDF Benchmark

- Hardware setting
$\checkmark 31$ computing nodes
\checkmark One serves as the master and the rest workers
- $S P^{2}$ Bench
\checkmark Choose the DBLP library as its simulation basis
$\checkmark 100 \mathrm{M}$ edges with 5 Queries: Q2, Q4, Q6, Q7, Q8

Experimental Evaluations -With RDF Benchmark

- Experiment setting
\checkmark Partition configuration: CP1 to CP5
\checkmark Workload: 10,000 random queries with random starts
- Results
\checkmark Significant cross-partition query reduction
\checkmark Cross-partition query vanishes for Q2,Q4 and Q6

Experimental Evaluations
 -With RDF Benchmark

- Experiment setting
\checkmark Partition Configuration: CP1*5, CP5 and CP4+DP
\checkmark Evolving query workload: evolving 10,000 queries with 10 timestamps
- Results
\checkmark Blue vs. green: effect of complementary partitioning
\checkmark Green vs. red: effect of on-demand partitioning

Experimental Evaluations -With Real Graph Datasets

- Datasets

Graph	Size (GB)	Partition (s)	VFL (MB)	VPT (MB)
Web	14.8	120	81.5	35.3
Twitter	24	180	109.0	45.4
Bio	13	40	135.9	55.3
Syn.	17	800	543.7	205

- Query workload
\checkmark neighbor search
\checkmark random walk
\checkmark random walk with restart

Experimental Evaluations -With Real Graph Datasets

Complementary Partitioning
Query Profiling \square Envelopes Collection Partition Creation

\# of cross-partition queries
Dynamic Partitioning: runtime cos

Partition replication: throughput

Dynamic partitioning: response time

Cross-partition queries vs. Improvement ratio in avg. response time

Conclusions \& Takeaways

- Partitioning techniques with two level partition management
\checkmark Complementary partitioning
\checkmark On-demand partitioning
- Greedy algorithm for dynamic partitioning
- Available at http://grafia.cs.ucsb.edu/sedge/index.html
- Takeaways:
$\checkmark \quad$ One partition scheme cannot fit all
$\checkmark \quad$ Always a tradeoff between data locality and load balancing
$\checkmark \quad$ Future work can be done regarding efficient distributed RDF data storage management, distributed query processing over RDF, etc.

Q \& A

- 1. In this work, a major assumption is that the network bandwidth is consistent for each pair of nodes. But in reality, it's often not the case. How to efficiently manage partitions in a distributed setting with network bandwidth unevenness?
- 2. Metadata are becoming big data as well. In this design, the VPT is a few GB for each node. In estimation, metadata is $0.1 \%-1 \%$ of the data space [4]. How to efficiently manage these tables? More generally, how to efficiently manage graph metadata?
- 3. How to compare or extend Sedge to other settings and partition metrics:
\checkmark Setting:multi-processors?
\checkmark Data model: hyper-graph?
\checkmark Metrics: Query makespan or boundary cut?

References

- [1] Shao, Bin, Haixun Wang, and Yatao Li. "Trinity: A distributed graph engine on a memory cloud." Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. ACM, 2013.
- [2] Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM, 2010.
- [3] Pujol, Josep M., et al. "The little engine (s) that could: scaling online social networks." ACM SIGCOMM Computer Communication Review 41.4 (2011): 375-386.
- [4] E. L. Miller, K. Greenan, A. Leung, D. Long, and A. Wildani. (2008) Reliable and efficient metadata storage and indexing using nvram. [Online].
Available: dcslab.hanyang.ac.kr/nvramos08/EthanMiller.pdf

Backup
 - Duplicate sensitive graph query

- Use UNION instead of SUM.

