
Towards Effective Partition 

Management for Large 

Graphs
Shengqi Yang, Xifeng Yan, Bo Zong and Arijit Khan (UC Santa Barbara)

Presenter: Xiao Meng



Motivation

- How to manage large graphs?

 Increasing demand for large graph management on commodity servers

 Facebook: 890 million daily active users on average for December 2014

 Achieving fast query response time and high throughput

 Partitioning/distributing and parallel processing of graph data

 However… It’s always easier said than done.



Outline

 Background

 Overview of Sedge

 Techniques of Sedge

 Complementary partitioning

 On-demand partitioning

 Two-level partition management

 A Look Back & Around

 Experimental Evaluations

 Conclusions & Takeaways

 Q & A



Background

- Solutions available

 Memory-based solution

 Single-machine: Neo4j, HyperGraphDB

 Distributed: Trinity [1]

 General distributed solution

 MapReduce-style ill-suited for graph processing

 More specialized solution

 Graph partitioning and distribution

 Pregel [2], SPAR [3]



Background

- Graph query workload types

 Queries with random access or complete traversal of an entire graph

 Queries with access bounded by partition boundaries

 Queries with access crossing the partition boundaries

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Overview of Sedge
- Self Evolving Distributed Graph Management Environment

 Built upon Pregel, but 

eliminating constraints and 

solving problems facing it

 Workload balancing, overhead 

reduction, duplicate vertices…

 Leveraging partitioning 

techniques to achieve that 

 2-level partition architecture supports 

complementary and on-demand 

partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Techniques of Sedge

- Complementary partitioning

 Idea: repartition the graph with region constraint

 Basically, we want to find a new partition set of the same graph so that the 

originally cross-partition edges become internal ones 

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Techniques of Sedge

- Complementary partitioning

 How it’s done theoretically?

 Formulation to a  nonconvex quadratically constrained quadratic integer program (QCQIP) to 

reuse the existing balanced partitioning algorithms

 How it’s done practically?

 Solution1: Increase the weight of cut edges by λ then rerun

 Solution2: Delete all cut edges first then rerun

 How it works then?

 There could be several partitions capable of handling a query to a vertex u

 Queries should be routed to a safe partition: u far away from partition boundaries



Techniques of Sedge

- On-demand partitioning

 Hotspot is a real bummer and it comes in two shapes

 Internal hotspots located in one partition

 Cross-partition hotspots on the boundaries of multiple partitions



Techniques of Sedge

- On-demand partitioning

 Hotspot is a real bummer and it comes in two shapes

 Internal hotspots located in one partition

 Cross-partition hotspots on the boundaries of multiple partitions

 To deal with internal hotspots: Partition Replication

 To deal with cross-partition hotspots: Dynamic Partitioning



Techniques of Sedge

- On-demand partitioning

 Partition workload: internal, external (cross-partition)

 Partition Replication starts when internal workload is intensive

 Replicate partition P to P’

 Send P’ to idle machine with free memory space

 Else replace a slack partition with P’



Techniques of Sedge

- On-demand partitioning

 For cross-partition hotspots: Dynamic Partitioning

 Better to generate new partitions that only cover these areas

 New partitions only share heavy workload while reduce communication

 Step 1: hotspot analysis

 Calculate ratio r = 
|𝑊𝑒𝑥𝑡(𝑃)|

|𝑊𝑖𝑛𝑡 𝑃 |+|𝑊𝑒𝑥𝑡(𝑃)|
p = 

|𝐸𝑒𝑥𝑡(𝑃)|

|𝐸𝑖𝑛𝑡 𝑃 |+|𝐸𝑒𝑥𝑡(𝑃)|

 Hypothesis testing: if r is much higher than p, then assume there are cross-partition hotspots in P



Techniques of Sedge

- On-demand partitioning

 Step 2: Track cross-partition queries

 Mark the search path with color-blocks

 Profile a query to an envelope

 Collect the envelopes to form one new partition

• Color-blocks: coarse-granularity 

units to trace path of cross-

partition queries

• Envelope: a sequence of blocks 

that covers a cross-partition 

query

• Envelope Collection: put the 

maximized # of envelopes into 

a new partition wrt. space 

constraint

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Techniques of Sedge

- On-demand partitioning

 Envelope collection objective

 Put the maximized # of envelopes into a new partition wrt. size constraint

 A classic NP-complete problem: Set-Union Knapsack Problem

 A greedy algorithm to save the day

 Intuition: combining similar envelopes consumes less space than combining non-similar ones

 Metric: Jaccard coefficient 𝑆𝑖𝑚 𝐿𝑖 , 𝐿𝑗 =
|𝐿𝑖∩𝐿𝑗|

|𝐿𝑖∪𝐿𝑗|

 Solution: Locality-sensitive Hashing



Techniques of Sedge

- On-demand partitioning

 Envelope collection objective

 Put the maximized # of envelopes into a new partition wrt. size constraint

 A classic NP-complete problem: Set-Union Knapsack Problem

 A greedy algorithm to save the day

 Intuition: combining similar envelopes consumes less space than combining non-similar ones

 Metric: Jaccard coefficient 𝑆𝑖𝑚 𝐿𝑖 , 𝐿𝑗 =
|𝐿𝑖∩𝐿𝑗|

|𝐿𝑖∪𝐿𝑗|

 Solution: Locality-sensitive Hashing – Min-Hash



Techniques of Sedge

- On-demand partitioning

 Step 2: Track cross-partition queries

 Mark the search path with color-blocks

 Profile a query to an envelope

 Collect the envelopes to form one new partition

 Step 3: Partition Generation

 Assign each cluster a benefit score 𝜌 =
|𝑊(𝐶)|

|𝐶|

 Iteratively add the cluster with the highest ρ to an initially empty partition 

(as long as the total size ≤ the default partition size M)



Techniques of Sedge

- On-demand partitioning

 Step 2: Track cross-partition queries

 Mark the search path with color-blocks

 Profile a query to an envelope

 Collect the envelopes to form one new partition

 Step 3: Partition Generation

 Assign each cluster a benefit score 𝜌 =
|𝑊(𝐶)|

|𝐶|

 Iteratively add the cluster with the highest ρ to an initially empty partition 

(as long as the total size ≤ the default partition size M)

 Discussion: too good to be true?



Techniques of Sedge 

- Two-level partition management

 Two-level partition 

architecture

 Primary partitions: A, B, C and D 

inter-connected in two-way

 Secondary partitions: B’ and E 

connected with primary ones in 

one-way

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



A Look Back & Around

- Other modules of Sedge

 meta-data manager

 Meta-data maintained by master and 

Pregel instances (PI)

 In master: info about each PI and a 

table mapping vertices to PI 

 (Instance Workload Table, Vertex-Instance 

Fitness List)

 In PIs: an index mapping vertices to 

partitions in each PI 

 (Partition Workload Table, Vertex-Primary 

Partition Table, Partition-Replicates Table, Vertex-

Dynamic Partitions Table)

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



A Look Back & Around

- Other modules of Sedge

 Performance Optimizer

 Continuously collects run-time 

information from all the PIs and 

characterizes the execution of the 

query workload

 The master updates IWT while PIs 

maintain the PWTs

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



A Look Back & Around

- Other related works

 Large-scale graph partitioning tools

 METIS, Chaco, SCOTCH

 Graph platforms

 SHS, PEGASUS, COSI, SPAR

 Distributed query processing

 Semi-structured, relational, RDF data



Experimental Evaluations

-With RDF Benchmark

 Hardware setting

 31 computing nodes

 One serves as the master and the rest workers

 𝑆𝑃2Bench

 Choose the DBLP library as its simulation basis

 100M edges with 5 Queries: Q2, Q4, Q6, Q7, Q8



Experimental Evaluations

-With RDF Benchmark

 Experiment setting

 Partition configuration: CP1 to CP5

 Workload: 10,000 random queries with 

random starts

 Results

 Significant cross-partition query reduction

 Cross-partition query vanishes for Q2,Q4 

and Q6

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Experimental Evaluations

-With RDF Benchmark

 Experiment setting

 Partition Configuration: CP1*5, CP5 and 

CP4+DP 

 Evolving query workload: evolving 10,000 

queries with 10 timestamps

 Results

 Blue vs. green: effect of complementary 

partitioning

 Green vs. red: effect of on-demand 

partitioning

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012



Experimental Evaluations

-With Real Graph Datasets

 Datasets

 Query workload

 neighbor search

 random walk

 random walk with restart

Graph Size (GB) Partition (s) VFL (MB) VPT (MB)

Web 14.8 120 81.5 35.3

Twitter 24 180 109.0 45.4

Bio 13 40 135.9 55.3

Syn. 17 800 543.7 205



Experimental Evaluations

-With Real Graph Datasets

Figure taken from “Towards Effective Partition Management for Large Graphs”, SIGMOD 2012

Complementary Partitioning Partition replication: throughput

Dynamic Partitioning: runtime cost Dynamic partitioning: response time

Cross-partition queries vs. Improvement

ratio in avg. response time



Conclusions & Takeaways

 Partitioning techniques with two level partition management

 Complementary partitioning

 On-demand partitioning

 Greedy algorithm for dynamic partitioning

 Available at http://grafia.cs.ucsb.edu/sedge/index.html

 Takeaways:

 One partition scheme cannot fit all

 Always a tradeoff between data locality and load balancing

 Future work can be done regarding efficient distributed RDF data storage management, 
distributed query processing over RDF, etc.

http://grafia.cs.ucsb.edu/sedge/index.html


Q & A

 1. In this work, a major assumption is that the network bandwidth is consistent for 
each pair of nodes. But in reality, it’s often not the case. How to efficiently 
manage partitions in a distributed setting with network bandwidth unevenness?

 2. Metadata are becoming big data as well. In this design, the VPT is a few GB 
for each node. In estimation, metadata is 0.1% - 1% of the data space [4].  How 
to efficiently manage these tables? More generally, how to efficiently manage 
graph metadata?

 3. How to compare or extend Sedge to other settings and partition metrics: 

 Setting: multi-processors?

 Data model: hyper-graph?

 Metrics: Query makespan or boundary cut?



References

 [1] Shao, Bin, Haixun Wang, and Yatao Li. "Trinity: A distributed graph 

engine on a memory cloud." Proceedings of the 2013 ACM SIGMOD 

International Conference on Management of Data. ACM, 2013.

 [2] Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph 

processing." Proceedings of the 2010 ACM SIGMOD International 

Conference on Management of data. ACM, 2010.

 [3] Pujol, Josep M., et al. "The little engine (s) that could: scaling online 

social networks." ACM SIGCOMM Computer Communication Review 41.4 

(2011): 375-386.

 [4] E. L. Miller, K. Greenan, A. Leung, D. Long, and A. Wildani. (2008) Reliable 

and efficient metadata storage and indexing using nvram. [Online]. 

Available: dcslab.hanyang.ac.kr/nvramos08/EthanMiller.pdf



Backup

- Duplicate sensitive graph query

 Use UNION instead of SUM.


